Extensions 1→N→G→Q→1 with N=C32 and Q=C3xA4

Direct product G=NxQ with N=C32 and Q=C3xA4
dρLabelID
A4xC33108A4xC3^3324,171

Semidirect products G=N:Q with N=C32 and Q=C3xA4
extensionφ:Q→Aut NdρLabelID
C32:1(C3xA4) = A4xHe3φ: C3xA4/A4C3 ⊆ Aut C32369C3^2:1(C3xA4)324,130
C32:2(C3xA4) = C3xC32:A4φ: C3xA4/C2xC6C3 ⊆ Aut C3254C3^2:2(C3xA4)324,135

Non-split extensions G=N.Q with N=C32 and Q=C3xA4
extensionφ:Q→Aut NdρLabelID
C32.1(C3xA4) = He3.A4φ: C3xA4/A4C3 ⊆ Aut C32549C3^2.1(C3xA4)324,53
C32.2(C3xA4) = He3:A4φ: C3xA4/A4C3 ⊆ Aut C32549C3^2.2(C3xA4)324,54
C32.3(C3xA4) = He3:2A4φ: C3xA4/A4C3 ⊆ Aut C32369C3^2.3(C3xA4)324,55
C32.4(C3xA4) = C62.C32φ: C3xA4/A4C3 ⊆ Aut C32549C3^2.4(C3xA4)324,56
C32.5(C3xA4) = 3- 1+2:A4φ: C3xA4/A4C3 ⊆ Aut C32549C3^2.5(C3xA4)324,57
C32.6(C3xA4) = C62.6C32φ: C3xA4/A4C3 ⊆ Aut C32369C3^2.6(C3xA4)324,58
C32.7(C3xA4) = He3.2A4φ: C3xA4/A4C3 ⊆ Aut C32549C3^2.7(C3xA4)324,129
C32.8(C3xA4) = A4x3- 1+2φ: C3xA4/A4C3 ⊆ Aut C32369C3^2.8(C3xA4)324,131
C32.9(C3xA4) = C62.9C32φ: C3xA4/A4C3 ⊆ Aut C32549C3^2.9(C3xA4)324,132
C32.10(C3xA4) = C62.13C32φ: C3xA4/C2xC6C3 ⊆ Aut C32543C3^2.10(C3xA4)324,49
C32.11(C3xA4) = C62.14C32φ: C3xA4/C2xC6C3 ⊆ Aut C32543C3^2.11(C3xA4)324,50
C32.12(C3xA4) = C62.15C32φ: C3xA4/C2xC6C3 ⊆ Aut C32543C3^2.12(C3xA4)324,51
C32.13(C3xA4) = C33:2A4φ: C3xA4/C2xC6C3 ⊆ Aut C32183C3^2.13(C3xA4)324,60
C32.14(C3xA4) = C62.25C32φ: C3xA4/C2xC6C3 ⊆ Aut C32543C3^2.14(C3xA4)324,128
C32.15(C3xA4) = C9xC3.A4central extension (φ=1)162C3^2.15(C3xA4)324,46
C32.16(C3xA4) = C62.11C32central extension (φ=1)162C3^2.16(C3xA4)324,47
C32.17(C3xA4) = C62.12C32central extension (φ=1)162C3^2.17(C3xA4)324,48
C32.18(C3xA4) = C62.16C32central extension (φ=1)108C3^2.18(C3xA4)324,52
C32.19(C3xA4) = C62:C9central extension (φ=1)54C3^2.19(C3xA4)324,59
C32.20(C3xA4) = A4xC3xC9central extension (φ=1)108C3^2.20(C3xA4)324,126
C32.21(C3xA4) = C3xC9:A4central extension (φ=1)108C3^2.21(C3xA4)324,127
C32.22(C3xA4) = C32xC3.A4central extension (φ=1)162C3^2.22(C3xA4)324,133
C32.23(C3xA4) = C3xC32.A4central extension (φ=1)54C3^2.23(C3xA4)324,134

׿
x
:
Z
F
o
wr
Q
<